

	SC17 : Civil EnggI BPSC-AE Mains		
21.	Ans. (c)	38.	
22.	Ans. (c)		0 - 25% humid soil.
	As per codal recommendation, wind-load and earthquake loads are not considered		25 – 50% damp soil.
	earthquake loads are not considered simultaneously.	39.	Ans. (a)
23.			Time factor
24.	Ans. (d)		$T_v = \frac{C_v t}{d^2}$
25.	Ans. (d)		$t \propto d^2$
26.	Ans. (d)		
27.	Ans. (a)		Where, $d =$ Length of drainage path
28.	Ans. (c)		$d_1 = \frac{H}{2}$
29.	Ans. (c)		$d_2 = H$
	Throat is the weakest section.		So, 'd' is doubled then time taken will be fou
30.	Ans. (b)		times.
31.	Ans. (a)		So, the rate of compression will be four time
32.	Ans. (a)		slower.
33.	Ans. (b)	40.	Ans. (c)
	The major mode of failure in weld is 'Shear.'	41.	Ans. (c)
34.	Ans. (c)		For boiling condition
	Z		$i = i_c$
	Shape factor = $\frac{Z_p}{Z_e}$		$i = i_c = \frac{G-1}{1+e}$
			110
	${ m Z}_{ m p}=rac{{ m A}}{ m z}ig(\overline{{ m y}}_1\!+\!\overline{{ m y}}_2ig)$		i ≈ 1
	$-D^2(2D, 2D)$		For fine sand
	$= \frac{\pi D^2}{8} \left(\frac{2D}{3\pi} + \frac{2D}{3\pi} \right)$		G = 2.65, e = 0.65
		42.	Ans. (c)
	$=\frac{\pi D^3}{6\pi}=\frac{D^3}{6}$		Porosity $n = 0.375$
			∴ Void Ratio
	$Z_{e} = \frac{I}{y} = \frac{\pi D^{4}/64}{D/2} = \frac{\pi D^{3}}{32}$		$e = \frac{n}{1 - r}$
	Shape factor = $\frac{D^3 / 6}{\pi D^3 / 32} = \frac{16}{3\pi}$		$e = \frac{0.375}{1 - 0.375} = 0.6$
35.	Ans. (c)		Specific gravity
36.	Ans. (d)		G = 2.6
	Aluminosilicates are the major component of kaolin and other clay minerals.		Critical hydraulic gradient
37.	Ans. (b)		$i_{c} = \frac{G-1}{1+e}$
	PI		c = 1 + e

Activity =
$$\frac{\text{PI}}{\text{%Weight finer than } 2\mu}$$

info@engineersacademy.org +91 809 444 1 777 www.engineersacademy.org 2

 $i_{\rm C} = \frac{2.6 - 1}{1 + 0.6} = 1$

BPSC17 : Civil EnggI BPSC-AE Mains Test Series ENGINEERS ACADEMY					
43.	Ans. (c)	47.	Ans. (b)		
	Coefficient of compressibility		For pure cohesive soils		
	$a_v = \frac{\Delta e}{\Delta \overline{\alpha}} = \frac{0.7 - 0.6}{17.5 - 17.0}$		$N_c = 5.7$ $N_g = 1$		
		10	$N_r = 0$		
	$= \frac{0.1}{0.5} = 0.2 \text{ m}^2/\text{t}$		Ans. (c)		
44.	Ans. (c)	49.			
	For cohesive soils change in water content, changes it's state.	50.	Ans. (b) $e_{o} = 1$		
	So, consistency as applied to cohesive soils is an		$e_{f} = 0.5$		
	indicator of its shear strength.		$H_o = 2.4$ cm		
45.	Ans. (c)		ΔΗ Δε		
	Given, $I_p = 25$		$\frac{\Delta H}{H_o} = \frac{\Delta e}{1+e_0}$		
	%C = 15		05.24		
	Activity ratio,		$\Delta H = \frac{0.5 \times 2.4}{1+1}$		
	$A_{\rm C} = \frac{\% I_{\rm P}}{\% C} = \frac{25}{15} = 1.67$		$\Delta H = 0.6 \text{ cm}$ So, final thickness = 2.4 - 0.6 = 1.8 cm.		
46.	Ans. (b)		So, final thickness = $2.4 - 0.6 = 1.8$ cm.		
			000		